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Abstract

We examine to what extent finite-dimensional spaces defined on locally compact subsets of
the line and possessing various weak Chebyshev properties (involving sign changes, zeros,
alternation of best approximations, and peak points) can be uniformly approximated by a
sequence of spaces having related properties.
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1. Introduction

Let T be a locally compact Hausdorff space that contains at least #n + 1 points, and
let Co(T) be the space of all real-valued continuous functions f on 7 which vanish at
infinity, i.e., for each ¢>0, {treT: |f(¢)|=¢} is compact. Then Cy(T) is a Banach
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space with the uniform norm ||f|| == sup{|f(¢)|: teT}. If T is actually compact,
then Cy(T) is just the space C(T) of all continuous functions on 7.

In this paper we are interested in finite-dimensional linear subspaces of Cy(7") with
the following kinds of properties (see below for precise definitions):

(1) Chebyshev properties,

(2) weak-Chebyshev properties,
(3) peak point properties,

(4) alternation properties,

(5) interpolation properties.

Our aim is to investigate the relationship between these various properties, and also
the extent to which such properties are preserved in the limit, as well as the extent to
which a space with given properties can be approximated by a sequence of spaces
with stronger properties. In this connection, we make the following definition.

Definition 1.1. Let G = span{gy, ¢>, ..., g} be an n-dimensional subspace of Cy(T).
Then we say that G is approximable by subspaces having property P provided that for
each ¢>0, there exists an n-dimensional subspace G, = span{g. i, ¢.2, ..., gen} Of
Co(T) having property P such that ||g.; — gi|| <¢ for each i = 1,2, ..., n.

We shall focus on the following questions:

Question 1.2. If a subspace G of Cyo(T) has a certain property P, can G be
approximated by subspaces with some stronger property Q?

Questionl.3. If the subspace G is approximable by subspaces having property P, what
properties must G have?

As just one example of what we have in mind, we recall the following result of
Jones and Karlovitz, which was the starting point for this work.

Theorem 1.4 (Jones and Karlovitz [5]). A4 finite-dimensional subspace of Cla,b] has
the “weak Chebyshev” property (see property W-2 in Section 4) if and only if it is
approximable by Chebyshev subspaces (see property C-2 in Section 3).

The remainder of the paper is organized as follows. In Section 2 of the paper
we describe an alternative formulation of the concept of approximability. In
Sections 3—5 we introduce the various properties of interest in this paper, and explore
their interconnection (see Figs. 1-3). In particular, these sections deal with the three
cases: (1) T is an arbitrary locally compact set, (2) T is a locally compact subset of R,
and (3) T is an interval. Sections 6 and 7 contain the main results of the paper where
we answer Questions 1.2 and 1.3. Our results are summarized in Tables 1-6.
Section 8 is devoted to a collection of examples which are useful for tracing
the connection between various properties as well as for answering Questions 1.2
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and 1.3. In Section 9 we examine spaces which are limits of weak Chebyshev spaces,
and in Section 10 we discuss properties of spaces of extended functions. Finally, in
Section 11 we establish a generalization of the Jones—Karlovitz theorem (see
Corollary 11.2).

2. An equivalent formulation of approximability

In this section we present an interesting reformulation of the concept of
approximability. First, we need a simple lemma concerning linearly independent
sets in a normed linear space.

Lemma 2.1. Let {g1,92, ..., gn} be a linearly independent set of n vectors in a normed
linear space. Then there exists an ¢>0 such that if {hy, ha, ..., h,} is any set of n vectors
satisfying ||h; — gi||<e for i=1,2,....n, then {hi,hy,....,h,} is also linearly
independent.

Proof. Since all norms are equivalent on a finite-dimensional space, there exists a
constant ¢>0 such that

n
¢ Z Joui| <
i=1

Now let ¢ = ¢, and choose /; such that ||h; — gi||<efori=1,2,...,n. If by, ho, ..., hy
were not linearly independent, there would exist a nonzero n-tuple (o4, ..., a,) of real
numbers such that > !, ;4 = 0. Then

n

Z Ofi(é]i - hi)

i=1

for all n-tuples (a1, 02, ...,0,) of real numbers. (2.1)

n
oidi
i=1

n n
<> foilllgs = hill<e Y oul,

i=1 i=1
which is impossible. [

Before stating the main result of this section, we need to introduce some additional
notation. Let G be a finite-dimensional subspace of Cy(T'), and suppose f'€ Co(T).
Then the set of best approximations to f from G is defined to be the set

Pe(f) ={9eG: |lf —gll =d(f,G)},

where d(f,G) = inf{||f —g||: geG}. It is well-known that Pg(f ) is nonempty
whenever G is finite dimensional.

Proposition 2.2. Let G = span{gi, g2, ..., gn} be an n-dimensional subspace of Co(T).
Then the following statements are equivalent:

(1) G is approximable by subspaces having property P;
(2) there exists a sequence of n-dimensional subspaces Gy = span{g 1, g2, -, Gkn}
having property P such that limy_, o ||gk; — ¢i|| =0 for each i =1,2, ... n;
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(3) for each >0, there exists an n-dimensional subspace G, having property P such
that

sup d(g,B(G.)) <e, (2.2)
g€ B(G)

where B(Y) = {ye Y: ||y||<1} is the unit ball in Y.

Proof. Equivalence (1)< (2) is clear. We now prove (1) = (3). Given ¢>0, by (2.1)
and property (1), there exists a subspace G, = span{g., ..., g.»} having property P
such that

ce

1 i=1,...,n,

19 — gill <

where c is the constant in (2.1). To verify statement (3), we now show that for every
g€ B(G), there exists g, € B(G;) such that

&
g — gll <5 <e. (2.3)

Let g =57, 2gie B(G), and set h, =" | %g.;. Then h,eG, and
" " ce ce ¢
lg — hel| < Z |19 — geill < Z Joti| Z< ]| 4_<4_1'
=1 =1 ¢

We also have ||h;||<||h; — g|| + ||g]| <5+ ||g]| <1 + % We consider two cases.
Case 1: ||h;||< 1. Take g, = h,.
Case 2: ||h.||> 1. Setting g, = ﬁ, we see that

& &
g =Ml =1+ 5<

h, £
— < — — <||l— — g
||g8 gll\Hgs h6||+||h£ g”\H”hs” e 4 "2

In either case, g, € B(G;) and (2.3) holds.

We now show that (3) = (1). Suppose (3) holds. Then for each £>0, there exists
an n-dimensional subspace G, having property P such that (2.2) holds. We may
assume that ¢ is sufficiently small so that the conclusion of Lemma 2.1 holds. Assume
first that ||g;||<1 for all i. Then by (2.2), there exist g,,€ B(G;) such that ||g,; —
gil|<e for each i. By Lemma 2.1, {g.1, ..., g..} is a basis for G, and (2) holds.

In general, if ||g;|| > 1 for some i, let p = max; ||g;||. Letting g; == HZ—:H’ we see that
{g1, -.-,Gn} is a basis for G, and by the first part of the proof, there exists an n-
dimensional space G, = span{h;y,...,h:,} having property P such that ||/,; —

g‘]i|\<§ for all i. Setting g.; = ||gi||h.; for each i, we see that {g, 1, ...,g..} Is a basis
for G, and
ge.i = gill = I lgillhei = llgillgll = llgill[|he; — gil| <e

This proves (1). O
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3. T an arbitrary locally compact set

Let T be a fixed locally compact Hausdorff space that contains at least n + 1
points.

Definition 3.1. Suppose G is an n-dimensional subspace of Cy(7'). Then we say that
G has the Chebyshev property C-1 or C-2, respectively, provided that

(C-1) Pg(f) is a singleton for every f'e Co(T), or
(C-2) each nonzero ge G has at most n — 1 distinct zeros in 7.

A space G with property C-1 is usually referred to as a Chebyshev subspace. If G
has property C-2, it is usually referred to as a Haar subspace. Basic linear algebra
shows that the subspace G = span{g, g2, ..., gn} of Co(T) is a Haar subspace if and
only if

D<gla g2, vy gn);éO
1, b, ey Iy
for each choice of n distinct points {#,?, ...,#,} in T, where
gi(tr) g(t1) - ga(tr)
, e, t t t
D gi, 92 9n — gl(.z) gz(.z) gn(. 2) (3.1)
1, b, ey I . . .
gl(tn) gZ(ln) gn(tn)
is the determinant of the # x n matrix whose ijth entry is g;(#;). Equivalently, G is a
Haar subspace if and only if for any distinct 7, ¢, ...,¢, and any real numbers
Z1, ..., Zy, there exists a unique ge G such that

g(t;)) =z, i=1,..,n

Haar [4] showed that the Chebyshev and Haar properties are equivalent when T is
compact, see also [6]. The analogous result for locally compact 7" was established by
Phelps [8], see also [1] and [10, pp. 215-218]. Thus, we have

Fact 3.2. A finite-dimensional subspace of Cy(T) has property C-1 if and only if it has
property C-2.

We now recall two further properties of finite-dimensional subspaces of Cy(T)
that are related to the ability to interpolate given values at given points.

Definition 3.3 ([2]). An n-dimensional subspace G of Cy(7T) is said to be weakly
interpolating (WI) provided that for each set of n distinct points ¢;€ T and each set of
nsigns o;€{—1, 1}, there exist neighborhoods U; of #; and a nontrivial g € G such that

oig(t)=0 for all reU; and i=1,2,...,n. (3.2)
G is said to be interpolating (I) if strict inequality holds in (3.2).
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P-1 « WI « 1

1 7
P-2 C-1
t T
P-3 = c-2

Fig. 1. Relationships for general locally compact 7.

So far we have discussed only properties of a subspace G which can be defined
wholly in terms of elements of the subspace G without any reference to any elements
outside of G. We call such properties intrinsic properties. We now introduce several
nonintrinsic properties. Recall that a point te T is called a peak point for f'e Co(T) if
|f(t)] =] f]|- The following three peak point properties were introduced and studied
in [2].

Definition 3.4. The n-dimensional subspace G is said to have the peak point
properties P-1, P-2, or P-3 provided that

(P-1) for each f'e Cy(T) that has a unique best approximation go€ G, f — go has at
least n + 1 peak points;

(P-2) for each fe Cy(T), there exists goe Pg(f ) such that f — gy has at least n + 1
peak points;

(P-3) for each f'e Cy(T) and each goe Ps(f ), f — go has at least n + 1 peak points.

Theorem 3.5. Let T be an arbitrary locally compact set. Then the various properties
introduced in this section are related as shown in Fig. 1. Moreover, with the possible
exception of implication W1 = P-1, none of the one-sided implications is reversible.

Proof. Proofs of all of the direct implications in Fig. 1 can be found in [2,3]. It is not
known whether P-1 = WI, but all of the other one-sided implications are known to
be nonreversible, see [2,3]. [

Concerning the question of whether P1 = WI, it is known (see [2, Theorems 3.10—
3.11]) that under certain additional restrictions on G, the answer is affirmative.

To conclude this section, we note the (perhaps surprising) fact that for certain sets
T, there are no finite-dimensional Chebyshev subspaces in Cy(7T') (see Example 8.3
below).

4. T a locally compact subset of R

Throughout this section we assume that 7 is a locally compact subset of the set of
real numbers R (with its usual topology). Equivalently (see, e.g., [3]), we assume T\T
is closed. We now introduce several other types of Chebyshev and weak Chebyshev
properties, and discuss the relationships that hold between them.
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Definition 4.1. An n-dimensional subspace G of Cy(7T') is said to have the Chebyshev
property C-3 provided that for any basis {g1, g2, ..., g»} of G and every collection of
points t| <t <--- <ty and s <sy<--- <s§, In T,

D<g17 g2, Ty gn)'D<gl7 92, Ty gn>>0 (41)
I, b, ey I S, 82, vy S

It is not hard to show that an n-dimensional subspace G has property C-3 if and
only if (4.1) holds for some basis of G, see [9, Theorem 2.26, p. 32]. The following
result explores the connection between properties C-1, C-2, and C-3. Recall that an
interval in R is any set of the form |[a,b], [a,b), (a,b], or (a,b), where a<b, and

a=—o0 or b= oo is allowed on the open ends. Note that every interval is locally
compact.

Theorem 4.2. Let G be an n-dimensional subspace of Co(T).

(1) If G has property C-3, then G has property C-1. The converse does not hold in
general.

(2) If T is an interval, then G has any one of the properties C-1, C-2, or C-3 if and only
if it has all of them.

Proof. Fact 3.2 asserts that C-1 and C-2 are equivalent. To prove (1), suppose G has
property C-3. Then it is clear from (4.1) that G has property C-2, and hence also C-1.
To see that the converse fails, see either Example 8.4 or Example 8.5 below.

To prove (2), suppose T is an interval and that G = span{gi,¢s,...,g,} is an
n-dimensional subspace having property C-2 but not property C-3. In this case there
must exist points 7} <--- <t, and sy <--- <s, in T such that

D(le Ty gn><0<D<gl7 ] gn)
fyy - I Sty sy S

For each 2€]0, 1], let r;(1) = At; + (1 — A)s; for i = 1,2, ...,n. Then each r;(1)eT
since T is an interval, r;(0)=ws; ri(l)=1¢, and ri(1)<---<r,(1) so that

ri(4), ...,ry(A) form a distinct set of points for each . Now r;(1) is a continuous
g1, T In

1(/1)7 T Vn(i)

By the mean value theorem, it follows that there is some Ae€(0,1) such that

function of A implies that D ; ) is also a continuous function of 4.

p( 9. o g = 0, which contradicts our assumption that G has property
ri(2), -, r(d)

C2 0O

The following types of “‘weak Chebyshev’ properties were introduced in [3]. They
are all intrinsic.
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Definition 4.3. An n-dimensional subspace G = span{gi, ¢, ..., gn} of Co(T) is said
to have the Weak-Chebyshev property W-1, W-1', W-2, W-2'. W-3, or W-4 provided
that:

(W-1") forevery —oco = fo<t)<--- <t,_1<t, = oo with t1, ...,1,_1 € T, there exists
a nontrivial ge G such that

(=1)'g(t)=0 for all te[t;, t;;)nT, fori=0,...n—1;

(W-1) for every I<m<n and -0 =f<hH<:- <t 1<t = o0 with
ty,...,tu_1 €T, there exists a nontrivial g€ G such that
(=1)'g(1)=0 for all re(t;,t;;)nT, fori=0,....m—1;
(W-2") forevery —oo = to<t)< -+ <t,_1<t, = oo with t1, ..., 1,_1 € T, there exists

a nontrivial g€ G such that

(=1)'g(1)=0 for all tet;,t;1]nT, fori=0,....n—1;

(W-2) for every 1I<m<n and -0 =fH<h<:- <t 1<t = o0 with
ty,...,tm_1 €T, there exists a nontrivial g€ G such that

(=1)'g(1)=0 for all te(t;,t;1]nT, fori=0,...,m—1;

(W-3) for each choice of points | <t <--- <t, and 51 <s, <---s, in T,

D<g1, g,,> .D(gl, g”);o;

1, ey In S1, tty S

(W-4) each ge G has at most n — 1 sign changes, i.c., there do not exist n+ 1
points #; < -+ <t,4; in T such that g(#;)g(t;11) <0 fori=1,...,n.

Despite the terminology, it turns out that a Chebyshev subspace is not always a
Weak Chebyshev subspace (see Example 8.4 below). Recall that a set of points
h<ty<---<tx in T are called alternating peak points for the function f'e Cy(T) if

there exists o = + 1 such that f(;) = a(—=1)'||f]| for i =1, ..., k.

Definition 4.4. An n-dimensional subspace G of Cy(T) is said to have the alternation
property A-1, A-2, or A-3 provided

(A-1) for every f e Co(T) that has a unique best approximation gyo€ G, f — gy has at
least n + 1 alternating peak points;
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W-1'
f
Ww-1 & Al =» Pl & WI
f
w-2' f f f
T

Wl « W-2 & A2 = P2 <= 1
I )
w-3
¢ 0 1 c1
W-4
t ¢

C3 = C14+4W-2 & A3 = P3 & C2 <« C3

Fig. 2. Relationships for 7 a locally compact subset of R.

(A-2) for every f'e Co(T), there exists go€ Pg(f ) such that f — go has at least n + 1
alternating peak points;

(A-3) for every fe Co(T) and every goe Pg(f ), f — go has at least n + 1 alternating
peak points.

Theorem 4.5. Let T be a locally compact subset of R. Then the various properties
introduced above are related as shown in Fig. 2. It is an open question whether P-1 =
WI, but none of the other one-sided implications can be reversed.

Proof. The direct implications are established in [2,3]. These papers also establish the
nonreversibility of all one-sided implications, except for the following two cases:

(1) A-1-» A-2: If this implication were true, then it would follow from Fig. 2 that
property W-1 implies property W-2', which is known not to be the case.

(2) A-2- A-3: If this implication were true, then it would follow from Fig. 2 that
property W-2 implies property C-2, which is known not to be the case. [

5. T an interval

Theorem 5.1. Let T be an interval. Then the various properties introduced above are
related as shown in Fig. 3. Moreover, with the possible exception of implication W1 =
P-1, none of the one-sided implications can be reversed.

Proof. Except for A-3 < P-3, all of the implications indicated by the arrows in Fig. 3
are explicitly stated in [2,3]. Implication A-3 = P-3 is trivial. Now suppose G has
property P-3. Then G has property C-1 by Deutsch et al. [3, Theorem 7.1], and
by Deutsch et al. [3, Corollary 3.2(4)(c)] also property W-2. Thus, G has both of
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w-1'
)
W-1 & Al = P1 <« WI
(3
Ww-2' ¢ 1r f
(3

WI <« W-2 & A2 = P2 « 1
1 1
W-3
¢ i i) C-1
W-4
1 )3

C3 & Cl14W-2 & A3 & P3 & C2 & C3

Fig. 3. The case where 7 is an interval in R

the properties C-1 and W-2, and hence must also have property A-3 by Deutsch et al.
[3, Theorem 5.1].

The nonreversibility of the one-sided implications was established in [2,3] except
for the cases listed in the proof of Theorem 4.5. But the discussion of these cases
given there also applies here. [

6. Properties of limit spaces

In this section we answer Question 1.2 concerning what properties a space G must
have if it is the limit of a sequence of spaces Gj with some specified property. Our
results are summarized in Tables 1-3, which correspond to the cases where

(1) T is an interval,
(2) T is a locally compact subset of R,
(3) T is an arbitrary locally compact set.

In each of the tables, the properties of G are listed in the first column, and the
properties of the Gy are listed across the top. An entry Y (yes) in the (i, /)th position
in the table means that if a sequence of subspaces Gy has the property in the jth
column, then the limit space G has the property in the ith row. An entry N (no)
means that the limit space does not necessarily have that property.

To simplify the tables, we have combined groups of equivalent properties. Thus, in
Table 1, C stands for C-1 = C-2 = C-3. Similarly, W stands for any of the equivalent
properties W-1, W-1', W-2, W-2'. W-3, or W-4. In Table 2, C-2 = C-1. Note that we
have ordered the properties so that in general (but not always) the properties
become weaker as we move down or to the right. The process of justifying the entries
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in the tables can be greatly simplified by taking account of the following
observations:

® An N in a table implies an N in the same position in subsequent tables (since 7 is
increasingly more general).

® A'Y in a table implies a Y in the same position in previous tables.

® An N in the (i,j)th position of a table implies an N in row i and all columns
corresponding to properties that are weaker than the property in column j. It also
implies an N in column j and all rows corresponding to properties that are
stronger than the property in row i.

® A 'Y in the (i,j)th position of a table implies a Y in row i and all columns
corresponding to properties that are stronger than the property in column j. It
also implies a Y in column j and all rows corresponding to properties that are
weaker than the property in row i.

® If a subspace G has property P but not property Q, then the constant
sequence Gjp = G will have the property P, but the limit will not have the

property Q.

We now give explicit justifications for the key entries in each of the tables. All
other entries can be deduced using the above principles. We identify each entry by
the pair (i,/) describing its position in the table.

Table 1:

(1,1): Example 8.1 shows that this entry is N. This gives N in all other columns of
row 1.

(2,2): Theorem 9.1 shows that this entry is Y. This implies a Y in the (i, 1) and (i,2)
positions for all i>=2.

(i,4): and (i,5) for 1<i<5: To see that these entries are N, we can take Gy = G to
be as in Example 8.2.

Table 2:

(3,3), (4,4): Theorem 9.1 shows that these entries are Y. This implies that the entries
in (i,3) with ;>3 are also Y. Since C-3 implies W, we know that the entry in

Table 1
Limit relations for T an interval
C w P-2 WI P-1

C N N N N N
w Y Y N N N
P-2 Y Y N N
WI Y Y N N
P-1 Y Y N N




F. Deutsch et al. | Journal of Approximation Theory 123 (2003) 188-213 199

Table 2
Limit relations for 7" an arbitrary locally compact subset of R

C-3 C-2 W W-1 P-2 WI P-1
C-3 N N N N N N N
C-2 N N N N N N N
w Y N Y N N N N
W-1 Y N Y Y N N N
P-2 Y Y N N N
WI Y Y N N N
P-1 Y Y Y N N
Table 3
Limit relations for an arbitrary locally compact 7'

C-2 WI P-3 P-2 P-1

C-2 N N N N N
P-3 N N N
WI N N
P-2 N N
P-1 N N

(3,1) is also Y. This implies that the entries in (i, 1) with i>3 are also Y. The Y
in (4,4) implies a Y in (7,4).

(3,4): To see that this entry is N, we can take G, = G to be a space that does not
have property W, but which does have property W-1.

(4,2): We can take Gy = G to be the space in Example 8.5.

(4,5): To see that this entry is N, we can take Gy = G to be the space in
Example 8.5.

7. Approximability of spaces

In this section we answer Question 1.3 concerning whether a space G with a given
property can be approximated by a sequence of a spaces Gy with some other
property. Our results are summarized in Tables 4-6. In each of the tables the
properties of G are listed in the first column, and the properties of the Gy, are listed in
the first row. An entry Y (yes) in the (7, /)th position in the table means that a space G
with the property in the ith row can be approximated by spaces Gy with the property
in the jth column. An entry N (no) means that G cannot be approximated by such a
sequence.

As in Section 6, to simplify the tables we have combined groups of equivalent
properties. Thus, in Table 4, C stands for C-1 = C-2 = C-3. Similarly, W stands for
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any of the equivalent properties W-1, W-1', W-2, W-2'" W-3 or W-4. In Table 5,
C-2=C-1.

The process of justifying the entries in the tables can be greatly simplified by
taking account of the following observations:

All three tables contain Y’s on the diagonals since a space can always be
approximated by itself.

An N in a table implies an N in the same position in subsequent tables (since the
tables deal with increasingly more general sets 7).

A Y in a table implies a Y in the same position in previous tables.

An N in the (i,/)th position of a table implies an N in column j and all other rows
corresponding to properties that are weaker than the property in row i. It also
implies an N in row i and all other columns corresponding to properties that are
stronger than the property in column j.

A'Y in the (i,j)th position of a table implies a Y in row i for all other columns
corresponding to properties that are weaker than the property in column j. It also
implies a Y in column j and all other rows corresponding to properties that are
weaker than the property in row i.

Many entries of N can be deduced from the limit properties of Tables 1-3,
since if a subspace G has property P but not property Q, and if the
sequence Gy has property Q in the limit, then we cannot approximate G by
such Gy.

We now give explicit justifications for the key entries in Tables 4-6. All other
entries can be deduced by using the above principles. We identify each entry by the
pair (i,) describing its position in the table. As observed above, we clearly have Y on
the diagonals of all three tables. The many Y’s in the upper triangular parts of the
table follow from the fifth observation in the above list.

Table 4:

(25
(3’

1): Theorem 1.4 implies that this entry is Y.

2). Taking G to be a space which has property P2 but not property W, we
conclude that this entry must be N, since by Table 1 the limit of spaces with
property W must have property W.

(4,2): We take G to be a space with property WI but not property W.
Table 4
Approximability for 7" an interval

C W P-2 WI P-1
C Y Y Y Y Y
w Y Y Y Y Y
P-2 N N Y Y
WI N N Y Y
P-1 N N Y
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Table 5
Approximability for 7" a locally compact subset of R
C-3 C-2 w W-1 P-2 WI P-1

C-3 Y Y Y Y Y Y Y

C-2 N Y N N Y Y Y

w Y Y Y Y Y

W-1 N N Y Y

P-2 N N N Y Y

WI N N N Y Y

P-1 N N Y

Table 6

Approximability for arbitrary locally compact T

C-2 P-3 WI P-2 P-1

C-2 Y Y Y Y Y

P-3 Y Y Y

WI N Y Y

P-2 N Y Y

P-1 N Y

Table 5:

(3,1): This entry remains open, but Theorem 11.1 implies that it would be Y if we
allow approximation by functions which are just continuous and bounded
(rather than in Cy(T)).

(4,3): Taking G to be a space which has property W-1 but not property W, we
conclude that the entry must be N, since by Table 1 the limit of spaces with
property W must have property W.

Table 6:
(3,1), (4,1), (5,1): To see that these entries are N, we can take any space G with the

desired property defined on a uncountable set with the discrete topology, since
then (cf. Example 8.3) there are no Chebyshev subspaces.

8. Examples

In this section we collect several examples that are used throughout the paper.
Recall that the characteristic function of a subset S<T is the function yg: T —R
whose value is 1 if 7S and is 0, otherwise. A delta function at the point 7ye T,
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denoted Jy,, is the characteristic function of the singleton {7}, i.e., &z = xy4-
Clearly, J,, is in Co(T) if and only if #, is an isolated point of 7.

Example 8.1. Let 7 :=[0,1] and let G be the one-dimensional space spanned by
g(t) =t. For each k>1, let G, be the one-dimensional space spanned by gi(f) =
1/k+ t(k —1)/k. Then g; — g, and although each of the subspaces Gy has property
C-3, the limit space G does not have any of the equivalent properties C-1, C-2,
or C-3.

Proof. For each k>1, it is easy to check from the definition that Gj has property C-3
since gi is positive on [0, 1]. Since g has a zero at 0, the subspace G does not have
property C-2. By Theorem 4.2, all the C-i properties are equivalent. [

Example 8.2. Let 7 :=[—1,1] and let G be the one-dimensional space spanned by
g(t) = t. Then G has none of the properties in Fig. 3. However, G is approximable by
the sequence of one-dimensional spaces Gy spanned by

1+ 1/k, —1<t< —1/k,
gr(t) = 1 0, —1/k<t<1/k,
t—1/k, 1/k<t<1,

and the Gy have property WI for all k>1.

Proof. For the first assertion, it suffices to show that G does not have property P-1.
To see this, we observe that the function f(f)=1—¢ has a unique best
approximation in G, namely g =0, and the difference f — g has just one peak
point. It is clear that the Gj approximate G, and it is easy to check from the
definition that each Gy has property WI. [

Example 8.3. Let 7" be an uncountable set with the discrete topology (i.c., all sets are
open). Then there are no finite-dimensional Chebyshev subspaces in Cy(T).

Proof. Clearly, the only compact sets in 7" are the finite sets. Thus, given a function
f:T—R, we see that f'e Cy(T) if and only if for each £>0, the set {reT: | f(f)|>¢}
is finite. Thus,

supp/f = {teT: f(1)#0} = | ] {teT: |f(1)|=1/k}
k=1

is countable. Now let G = span{gy,¢a, ...,g,} be any n-dimensional subspace of
Co(T), and let S = |J| supp g;. Then S is countable, and g(¢) = 0 for all te T\S and
each ge G. Since S is countable, there exists a point 7ye T\S, and we define f on T by
f(to) =1l and f(r) =0 for all te T\{#p}. Then f'e Cy(T), and for each ge G, | f(#) —
g(to)| = |f(to)|=1=||f]|, and so ||f —g||=1=||f]|| for each geG. This proves
that 0e Pg(f). But for any ge G with ||g|| = 1, we see that ||/ — g|| = | and hence
gePs(f). This proves that both 0 and g are best approximations to f from G. Thus
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G is not Chebyshev. (This result can also be proved by using Fact 3.2 and the
observation that for this class of 7', every function in Cy(7) has infinitely many
zeros.) [

Example 8.4. Let T = {1,2}, and let G be the one-dimensional subspace spanned by
the function g(f) = (—1)". Then G has property C-2, but does not have property C-3
or any of the weak Chebyshev properties. In fact, G is not even approximable by
spaces having property C-3 or any of the weak Chebyshev properties.

Proof. Clearly, G has property C-2 since any nontrivial ge G cannot vanish.
On the other hand, since g is not of one sign on T, if g, is any sufficiently close
function, it must also have more than one sign. We conclude that G cannot be
approximated by spaces Gy with property W-1" or any of the other Weak-Chebyshev
properties. [

As shown in Fig. 1, a Chebyshev subspace must have properties I, WI, P-1, P-2,
and P-3. We now describe a Chebyshev subspace that, aside from these properties
that all Chebyshev subspaces must have, fails to have any of the other properties that
are studied in this paper.

Example 8.5. Let 7 = [0, 1]U{2}, g1 = 101 — 62, and G = span{g; }. Then

(1) G has properties C-1 and C-2, but not property C-3.

(2) G has the properties I, WI, P-1, P-2, and P-3.

(3) G fails to have any of the properties W-1, W-1', W-2, W-2', W-3, or W-4.
(4) G fails to have any of the properties A-1, A-2, or A-3.

Proof. Clearly, nontrivial functions in G' cannot have any zeros, so G has the Haar
property and is thus Chebyshev. On the other hand,

D<g11> -D<g21> —1(=1) = —1<0,

so G does not have property C-3. This proves (1). The properties listed in (2) follow
from Fig. 1. To prove (3), note that for one-dimensional subspaces, all of the weak
Chebyshev properties are obviously equivalent to the condition that the basis
element g; have one sign on 7. But g;(1)g;(2) <0 shows that this fails. Finally, to
prove (4), note that the best approximation in G of the function f = d;, is gg = —% g1,
and f — go=0. Thus G fails to have property A-1. [

Example 8.6. Let T = {1,2,3,4}, g1 = 01, g = 02 — I3, and G = span{g,¢>}. Then
G has properties W-1 and W-1', but not any of the equivalent properties W-2, W-2',
W-3, or W-4. Moreover, G cannot be approximated by either C-3 or W-2 subspaces.
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Proof. To see that G has property W-1, we note that for any ¢, € T, the function g,
itself has the required signs on [1,#;) and on [f,,4]. Clearly, G does not have property
W-4 since g == g; — ¢g» has 2 sign changes. This implies G does not have the equivalent
properties W-2, W-2/" W-3, and W-4. Now suppose G were approximatable by
subspaces having property C-3. Then by the first part of Theorem 11.1 it would have
property W-4, which we have just shown is not the case. Finally, G is not approximable
by subspaces having property W-2, since as noted in Table 2 the limit of a sequence of
spaces with property W-2 must also have property W-2 (and G does not). [

9. Limits of sequences of weak Chebyshev subspaces
Throughout this section we suppose that 7 is a locally compact subset of R.

Theorem 9.1. Suppose that G is approximable by a sequence of subspaces Gy, all
having property W, where W is one of the properties W-1, W-1', W-2, W-2'. W-3, or
W-4. Then G also has property W.

Proof. Suppose G = span{gy,...,g,} and Gy = span{gi, ..., gxn}. We first con-
sider the case where the Gy all have property W-3. Then

D gi, - Yn D gi, 5 Yn
t, ey I 81, S
9 ) ) 5 by ) s
— lim l)<JkJ gkn) -l)<gkl gkn>;>0’
k— oo tla ey tn S1, ey Sn

forall {y <t <--- <ty and sy <sp, < ---s, in T, and thus G also has property W-3. This
proves the theorem for W-3.

Now suppose that the Gy have property W-4, but that G does not. Then there exist
n+ 1 points t; < --- <t,y; in T and nontrivial g€ G such that

g(t)g(tis))<0,  i=1,..,n
Without loss of generality we may assume that ||g|| = 1. Let

¢= min |g(t)|.

1<i<n+l
Then ¢>0, and there exists a subspace G, with property W-4 such that

sup d(g,B(G,))<e.
9eB(G)

Hence, there exists g, € B(G;) with ||g — g.|| <e¢ and, in particular,
lg(t;)) — g:(t:)|<e, i=1,...,n+ 1.

This implies that g.(#)g(#;) >0, and it follows that
g:(t)g:(ti1)<0, i=1,...,n,
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which implies that G, could not have property W-4, a contradiction. This proves the
theorem for W-4.

We now prove the theorem when W denotes one of properties W-1', W-1, W-2/, or
W-2. Such a property can always be expressed in the following form: G has property
W iff for each set of points —o0 = fp<t)<--- <ty <t, = oo, there exists a
nontrivial ge G with

(=1)'g(1)=0 for all teS;, i=0,....m—1,

where S; = [t;,t;:1)NT or S; = [t;,t;11]nT and 1<m<n or m =n.
Now suppose each Gy has property W. Then there exist nontrivial /; € G; such
that

(=)' (1)=0 for all teS;, i=0,...,m—1. (9.1)

Without loss of generality, we may assume ||/i|| = 1 for all k. Since all norms are
equivalent on a finite-dimensional space, there exist constants ¢ >0 and ¢>0 such
that for all «eR" and all k,

n n
Z Oigk,i|| 2 Ck Z Joul,
i=1 P
n n
Z wgi|| =¢ Z o]
i=1 i=1

In fact (see Taylor [11, proof of Theorem 3.12A, p. 95]),
i inf{ > gl > ol = 1},
i=1 i=1
c:inf{ Z oigil|: Z |o;| = 1}.
i=1 i=1

We now show that ¢, — ¢ as k— oo. Suppose ¢>0, and choose k sufficiently large
so that

llgri —gill<e, i=1,...,n.

This implies that for every aeR" with 7 | |o] = 1,

n n n p
Z oidi Z Oigk,i Z g — Z %ig.i
i=1 i=l i1 ]

n n

< Z |oil[lgi — gr.il] < Z |oi|e = .
i=1 i=1

<

Thus,

—e< < + &

n
g oidi
i=1

n
E Olidk,i
i=1

n
E didi
i=1
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for every ae R” with >_7_ | |o;;| = 1. It follows that ¢ — e<cr <c +¢, and so ¢ —> ¢ as
asserted.
For the remainder of the proof we assume that k is sufficiently large so that

¢ >c/2. We now show that the sequences (o ;),—; are uniformly bounded for all

i=1,...,n. We have

n
E Ok iGk i
i=1

L=l =

n ¢ n
>0y Jowi| =5 > loeal-
i i

Hence,
1 2
> wil<S for all k,
- ¢

and in particular |ax ;| <2/c for all k and i.
To complete the proof, we now assume (by passing to a subsequence if necessary)
that

opi—ueR, i=1,..,n

Since gj; converges uniformly to g; for i = 1, ..., n, it follows that

n n
hye = Z O ik,i = Z %igi =: g.
Py =1

Clearly, ge G, ||g|| = 1 (since ||i|| = 1 for all k), and by (9.1),
(=1)'g(t)=0 for all reS;, i=0,...,m—1.

Thus, G also has property W as asserted. [

10. Properties of extended functions

A key tool for our study of the approximability of weak Chebyshev spaces by
Chebyshev spaces is the idea of extending a function defined on T to an interval, see

[2]. Given T, let T be the smallest closed interval containing T, i.e., T is the
intersection of all closed intervals containing 7. Given a function f'e Co(T), we

define its extension f on T as follows:
f(r) if teT,
fiy=X0 if teT\T,

linear in each open subinterval of T\T.

It is shown in [2] that for every function f € Cy(T), the extension f belongs to Co(7).
Given an n-dimensional space G = span{gy, ..., g,}, we write G for the subspace

of all extensions of elements in G. Then it is easy to see that G := span{gi, g2, .-, gn}-
The following lemma was established in [2].
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Lemma 10.1. A finite-dimensional subspace G of Cy(T) has all of the equivalent
properties W-2, W-2', W-3, and W-4 if and only G has the same properties in Cy(T).

We now show that the analog of this lemma fails for the properties W-1 or W-1".

Proposition 10.2. Let T ={1,2,3,4}, g1 =1, go =02 — 03, and suppose G =
span{gi,g2}. Then G is a two-dimensional subspace of Cy(T) that has properties
W-1 and W-1', but G fails to have either property in Co(T).

Proof. The fact that G has properties W-1 and W-1" was shown in Example 8.6. We
now show that the extension G does not have property W-1'. Here 7' = [1,4], and §,
and g, are piecewise linear functions on T with knots at the integers {2,3}. For any
given 1<t <2, it is impossible to find a e G that is nonnegative on [I,#;] and
nonpositive on [¢1, 4], and so G does not have either property W-1 or W-1'. [

11. A generalization of the Jones—Karlovitz theorem

Throughout this section we suppose that 7 is a locally compact subset of R and
that Cp(7T) is the Banach space of all real-valued continuous bounded functions f on
T equipped with the supremum norm ||f]|| :=sup,.r|f(¢)]. Note that
Co(T)= Cp(T), but the spaces are not the same in general. For example, consider
T := (0,1]. Then the nontrivial constant functions are in C,(7T) but not in Cy(T),
since /'€ Cy(T) implies that lim,_ ¢ f(£) = 0. However, when T is compact, Co(7T') =
Cy(T) = C(T).

Suppose G is a subspace of C,(7T) that has one of properties W-2, W-2', W-3, or
W-4. Since these properties are equivalent in this setting (cf. Fig. 2), we follow the
convention used in Tables 2 and 5, and simply write W for this property. We call
such a subspace a weak Chebyshev subspace.

Theorem 11.1. Let G :=span{gi,...,g,} be an n-dimensional weak Chebyshev
subspace of Co(T). Then there exists a sequence of subspaces Hjy =
span{hy 1, ..., hgn} in Cp(T) such that

(1) each Hy has property C-3,
(2) imyo, o ||; —gil| =0 fori=1,...,n.

In other words, every weak Chebyshev subspace in Cy(T) is approximable by C-3
subspaces in Cp(T).

Proof. Since T is the smallest closed interval containing 7, it must have one of the
following forms: (— o0, ), (—o0,b], [a, ©), or [a,b], where a<b. Now let G =
span{d, ..., J,} be the space obtained from G by extension as described in Section
10. Since G has property W-3 in Cy(T), it follows that G has property W-3 in Cy(7).
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We now further extend each §; to all of R by setting §;(¢) = g;(a) for all t<a and
Gi(t) = gi(b) for all t>b. Note that the (extended) space G has property W-3 in
Cp(R).

For each i =1,...,n and each keN, let /i ; be the function mapping 7 to R
defined by

hii(1) = / Kl — $)i(s)ds, 1eT, (11.1)
where
k _k2u2
Kk(u) Z:\/—_e y uelR (112)
P

is the standard Gauss (or Weierstrass) kernel. We recall the following well-known
properties:

K e Co(R) and Ki(u) =0 for all ueR, (11.3)
/ Ki(w)du=1, k=12, ..., (11.4)
-

« 1
/ﬂr usz(u)du:p, k=1,2,... . (11.5)

Clearly, for every te T, (11.4) implies that
o0
sl < [ Kt =)l ds = gl (116)

and so A ; is a well-defined bounded function on 7. We now show that it is
continuous. Fix any #ye T, and let ¢>0. By (11.4), there exists M >0 such that

&

K (s dS<—~. 11.7
/R\[M,M] (s) ds<gra] (L7

By (11.3), K} is uniformly continuous on R, and thus there exits a 5 € (0, 1) such that

&
0 11.8
L + ol + DG (118)

whenever |u — v|<d. It follows that for each re T with |t — 19| <0, we have

(1) — i (10)] = / [Ki(t — 5) — Ki(to — )}di(s) ds

[Kie(u) = Kie(v)| <

< [ IKult =) - Kelto ~ 99 s
R
=L+ D, (119)
where

I = |[Ki(1 = 5) = Ki(to — 5)||gi(s)| ds

/[—(M+fo+])7M+|10|+1]
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and

I = / |Ki(t — 5) — Ki(to — 5)]|gi(s)] ds.
R\[—(M+|to]+1), M+|10]+1]

Using (11.8), we obtain

& &
n< [ il ds =
(= (M40 +1), M+ 1o 1] (M + [2o] + D] |g]] 2
Using (11.7), we obtain
L< |gil| [Kic(t — 5) — Ki(to — 5)] ds

R\[—(M+to|[+1),M+[to|+1]

<l (g7 + g7r) = 3
T\4lgll - 4llgi| 2
Substituting these two estimates into (11.9) gives
(1) — hiei(t0)| <e,

whenever te T and |t — ty| <o. This shows that H, < Cy(T).

Since g;e Co(T), it follows that §; is uniformly continuous on 7. By the way in
which §; was extended to R, it follows that g; is uniformly continuous on R. Thus,
given ¢>0, there exists 0 = d(g) >0 such that for every s,7eR,

. g ¢ 2l|gi
) - gl <5+ 290 (s - oy

Using this and Egs. (11.4) and (11.5), we obtain

hiat) — (1) = / Kit — )[di(s) — di(0)] ds

< / Ki(t — 8)|gi(s) — Gi(1)| ds

< /[RKk(Z—S)[§+2||g~i||(S—t)2:| s

52
e 2lgll 1
2§ K
Since the right-hand side is independent of ¢, this implies that
it 2llgill 1
||hk,i - gi”<§+ 52 pER

For k sufficiently large, it follows that ||/; — §;|| <&, which proves statement (2) of
the theorem.

It remains to verify statement (1) of the theorem. For each set of points #; < --- <,
in T, the space of exponentials spanned by {K(#; — -), ..., Kk (¢, — )} has property
C-3 in Cy(R) (see, e.g., [7, p. 11]). After interchanging two of these functions if
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necessary, we may assume that

Kt—~, ey K (t, — -
D< e(f =) il )>>0 (11.10)
S1, Ty Sn
for every choice of points s; <--- <s, in R. Similarly, since span{gi, ...,J,} has

property W-3 in C,(R), we may assume that

D<g~la Ty g~n>>0
81, S

for every 51 < --- <s, in R. By the well-known composition formula for determinants
(see, e.g., [7, p- 81)),

hia (1) hia(ti) - hiea(ty)
A=
hk,l(ln) hk,2(tn) hk,n(tn)
i i Ki(t, —-), -, Ki(ty—-
:/ D(Ql, y g )D( K(tr =) i )>dsldsz-~dsn,
A, S1, ty S 81, Ty Sn
where

Ay=A{(s1,.c.,80)ER" 51 <+ <5}

Now the first integrand cannot vanish for all (sy, ...,s,)€ A, since gy, ..., J, are
linearly independent. Thus,

D(gl’ Ty gl’l>>0
S1, tty o S

on some open subset of A,. Combining this with (11.10), it follows that the
determinant A4 is positive, and we have shown that Hj has property C-3 in
Cy(T). O

Example 8.6 shows that the analog of Theorem 11.1 does not hold for properties
W-1 or W-1'. The proof of Theorem 11.4 is modeled after the proof of the classical
Jones—Karlovitz Theorem 1.4 which deals with the interval [a, b] (see, e.g., [7, p. 83]).
This result is of a slightly different nature than the others in this paper in the sense
that the approximating subspaces Hj here are not in Cy(7'), but instead lie in the
larger space Cp(T). It is natural to ask whether Hj can be constructed to lie in
Co(T). While this may be possible, it cannot be done using the method of
convolution with the Gauss kernel. Indeed, if we define /; ; by convolution with the
kernel Kj in (11.2), we get functions that lie in C,(7") but not in Cy(T"). To see this,
take for example 7' = (0, 1] and let g;(¢) = ¢. Then G := span{g; } has property W-3
in Co(T). Now T =[0,1], and (no matter how §; is defined on R\7 as long as it
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remains bounded) the function

By (1) = /:” Ki(t = 5)gi(s)ds, 1eT,

does not tend to 0 as t— 04, which implies that A ; ¢ Co(T).
Using Theorem 11.1, it is easy to prove the following generalization of the Jones—
Karlovitz theorem.

Corollary 11.2. Suppose T is a compact subset of R and that G is a finite-dimensional
subspace of C(T). Then G is weak Chebyshev if and only if G is approximable by
subspaces having property C-3.

Proof. If G is weak Chebyshev, then Theorem 11.1 implies that G is approximable
by C-3 subspaces in C,(T) = C(T). Conversely, if G is approximable by subspaces
having property C-3, then (see Fig. 2) G is approximable by subspaces having
property W-2. But limits of W-2 subspaces are also W-2 subspaces by Theorem 9.1.
Hence G has property W-2. [

Since a finite closed interval [a, b] is compact, Corollary 11.2 implies the classical
Jones—Karlovitz Theorem 1.4. In [5], Jones and Karlovitz also showed that in Cla, ],
properties W-2', W-3, W-4, and A-2 are all equivalent. In this connection we have
the following three results concerning the approximability of spaces having the
properties A-1, A-2, or A-3. Recall that in this section we are working under the
assumption that 7 is a locally compact subset of R.

Proposition 11.3. There exists a subspace G in Cy(T) having property A-1 that is not
approximable by C-3 subspaces.

Proof. This follows from Example 8.6, since A-1 and W-1 are equivalent from
Fig. 2. O

Theorem 11.4. Let G be a finite-dimensional subspace of Co(T).

(1) If G is approximable by C-3 subspaces, then G has property A-2.
(2) If T is compact, then G has property A-2 if and only if G is approximable by C-3
subspaces.

Proof. If G is approximable by C-3 subspaces, then, by Fig. 2, G is approximable by
W-2 subspaces. Since G is a limit of W-2 subspaces, G must also be a W-2 subspace
by Theorem 9.1. But W-2 is equivalent to A-2 by Fig. 2. Thus G must be an A-2
subspace. If T is compact, the result follows from Corollary 11.2. [
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Theorem 11.5. Let G be a finite-dimensional subspace of Co(T).

(1) If G has property C-1 and is approximable by C-3 subspaces, then G has property
A-3.

(2) If T is compact, then G has property A-3 if and only if G has property C-1 and is
approximable by C-3 subspaces.

Proof. If G is C-1 and is approximable by C-3 subspaces, then G is approximable by
W-2 subspaces by Fig. 2. By Theorem 9.1, G is W-2. By Fig. 2, G is A-3. If T is
compact and G is A-3, then by Fig. 2, G is C-1 and W-2. By Corollary 11.2, G is
approximable by C-3 subspaces. [J

It would be interesting to know whether the “only if ”” part of statement 2 in each
of the preceding two theorems is valid without the compactness of 7.
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