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Abstract

We examine to what extent finite-dimensional spaces defined on locally compact subsets of

the line and possessing various weak Chebyshev properties (involving sign changes, zeros,

alternation of best approximations, and peak points) can be uniformly approximated by a

sequence of spaces having related properties.
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1. Introduction

Let T be a locally compact Hausdorff space that contains at least n þ 1 points, and
let C0ðTÞ be the space of all real-valued continuous functions f on T which vanish at
infinity, i.e., for each e40; ftAT : j f ðtÞjXeg is compact. Then C0ðTÞ is a Banach
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space with the uniform norm jj f jj :¼ supfj f ðtÞj: tATg: If T is actually compact,
then C0ðTÞ is just the space CðTÞ of all continuous functions on T :

In this paper we are interested in finite-dimensional linear subspaces of C0ðTÞ with
the following kinds of properties (see below for precise definitions):

(1) Chebyshev properties,
(2) weak-Chebyshev properties,
(3) peak point properties,
(4) alternation properties,
(5) interpolation properties.

Our aim is to investigate the relationship between these various properties, and also
the extent to which such properties are preserved in the limit, as well as the extent to
which a space with given properties can be approximated by a sequence of spaces
with stronger properties. In this connection, we make the following definition.

Definition 1.1. Let G ¼ spanfg1; g2;y; gng be an n-dimensional subspace of C0ðTÞ:
Then we say that G is approximable by subspaces having property P provided that for
each e40; there exists an n-dimensional subspace Ge ¼ spanfge;1; ge;2;y; ge;ng of

C0ðTÞ having property P such that jjge;i 	 gijjoe for each i ¼ 1; 2;y; n:

We shall focus on the following questions:

Question 1.2. If a subspace G of C0ðTÞ has a certain property P; can G be

approximated by subspaces with some stronger property Q?

Question1.3. If the subspace G is approximable by subspaces having property P; what

properties must G have?

As just one example of what we have in mind, we recall the following result of
Jones and Karlovitz, which was the starting point for this work.

Theorem 1.4 (Jones and Karlovitz [5]). A finite-dimensional subspace of C½a; b� has

the ‘‘weak Chebyshev’’ property (see property W-2 in Section 4) if and only if it is

approximable by Chebyshev subspaces (see property C-2 in Section 3).

The remainder of the paper is organized as follows. In Section 2 of the paper
we describe an alternative formulation of the concept of approximability. In
Sections 3–5 we introduce the various properties of interest in this paper, and explore
their interconnection (see Figs. 1–3). In particular, these sections deal with the three
cases: (1) T is an arbitrary locally compact set, (2) T is a locally compact subset of R;
and (3) T is an interval. Sections 6 and 7 contain the main results of the paper where
we answer Questions 1.2 and 1.3. Our results are summarized in Tables 1–6.
Section 8 is devoted to a collection of examples which are useful for tracing
the connection between various properties as well as for answering Questions 1.2
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and 1.3. In Section 9 we examine spaces which are limits of weak Chebyshev spaces,
and in Section 10 we discuss properties of spaces of extended functions. Finally, in
Section 11 we establish a generalization of the Jones–Karlovitz theorem (see
Corollary 11.2).

2. An equivalent formulation of approximability

In this section we present an interesting reformulation of the concept of
approximability. First, we need a simple lemma concerning linearly independent
sets in a normed linear space.

Lemma 2.1. Let fg1; g2;y; gng be a linearly independent set of n vectors in a normed

linear space. Then there exists an e40 such that if fh1; h2;y; hng is any set of n vectors

satisfying jjhi 	 gijjoe for i ¼ 1; 2;y; n; then fh1; h2;y; hng is also linearly

independent.

Proof. Since all norms are equivalent on a finite-dimensional space, there exists a
constant c40 such that

c
Xn

i¼1

jaijp
Xn

i¼1

aigi

�����
�����

�����
����� for all n-tuples ða1; a2;y; anÞ of real numbers: ð2:1Þ

Now let e ¼ c; and choose hi such that jjhi 	 gijjoe for i ¼ 1; 2;y; n: If h1; h2;y; hn

were not linearly independent, there would exist a nonzero n-tuple ða1;y; anÞ of real

numbers such that
Pn

i¼1 aihi ¼ 0: Then

c
Xn

i¼1

jaijp
Xn

i¼1

aigi

�����
�����

�����
����� ¼

Xn

i¼1

aiðgi 	 hiÞ
�����

�����
�����

�����p
Xn

i¼1

jaijjjgi 	 hijjoc
Xn

i¼1

jaij;

which is impossible. &

Before stating the main result of this section, we need to introduce some additional
notation. Let G be a finite-dimensional subspace of C0ðTÞ; and suppose fAC0ðTÞ:
Then the set of best approximations to f from G is defined to be the set

PGð f Þ :¼ fgAG: jj f 	 gjj ¼ dð f ;GÞg;

where dð f ;GÞ :¼ inffjj f 	 gjj: gAGg: It is well-known that PGð f Þ is nonempty
whenever G is finite dimensional.

Proposition 2.2. Let G ¼ spanfg1; g2;y; gng be an n-dimensional subspace of C0ðTÞ:
Then the following statements are equivalent:

(1) G is approximable by subspaces having property P;
(2) there exists a sequence of n-dimensional subspaces Gk ¼ spanfgk;1; gk2;y; gk;ng

having property P such that limk-N jjgk;i 	 gijj ¼ 0 for each i ¼ 1; 2;y; n;
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(3) for each e40; there exists an n-dimensional subspace Ge having property P such

that

sup
gABðGÞ

dðg;BðGeÞÞoe; ð2:2Þ

where BðYÞ :¼ fyAY : jjyjjp1g is the unit ball in Y :

Proof. Equivalence ð1Þ3ð2Þ is clear. We now prove ð1Þ ) ð3Þ: Given e40; by (2.1)
and property (1), there exists a subspace Ge ¼ spanfge;1;y; ge;ng having property P

such that

jjge;i 	 gijjo
ce
4
; i ¼ 1;y; n;

where c is the constant in (2.1). To verify statement (3), we now show that for every
gABðGÞ; there exists geABðGeÞ such that

jjge 	 gjjpe
2
oe: ð2:3Þ

Let g ¼
Pn

i¼1 aigiABðGÞ; and set he :¼
Pn

i¼1 aige;i: Then heAGe and

jjg 	 hejjp
Xn

i¼1

jaijjjgi 	 ge;ijjo
Xn

i¼1

jaij
ce
4
pjjgjj ce

4c
p

e
4
:

We also have jjhejjpjjhe 	 gjj þ jjgjjoe
4
þ jjgjjp1 þ e

4
: We consider two cases.

Case 1: jjhejjp1: Take ge ¼ he:

Case 2: jjhejj41: Setting ge ¼ he
jjhejj; we see that

jjge 	 gjjpjjge 	 hejj þ jjhe 	 gjjp he

jjhejj
	 he

����
����

����
����þ e

4
¼ jjhejj 	 1 þ e

4
p

e
2
:

In either case, geABðGeÞ and (2.3) holds.
We now show that ð3Þ ) ð1Þ: Suppose (3) holds. Then for each e40; there exists

an n-dimensional subspace Ge having property P such that (2.2) holds. We may
assume that e is sufficiently small so that the conclusion of Lemma 2.1 holds. Assume
first that jjgijjp1 for all i: Then by (2.2), there exist ge;iABðGeÞ such that jjge;i 	
gijjoe for each i: By Lemma 2.1, fge;1;y; ge;ng is a basis for Ge; and (2) holds.

In general, if jjgijj41 for some i; let r :¼ maxi jjgijj: Letting %gi :¼ gi

jjgi jj; we see that

f %g1;y; %gng is a basis for G; and by the first part of the proof, there exists an n-
dimensional space Ge ¼ spanfhe;1;y; he;ng having property P such that jjhe;i 	
%gijjoe

r for all i: Setting ge;i ¼ jjgijjhe;i for each i; we see that fge;1;y; ge;ng is a basis

for Ge and

jjge;i 	 gijj ¼ jj jjgijjhe;i 	 jjgijj %gijj ¼ jjgijjjjhe;i 	 %gijjoe:

This proves (1). &
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3. T an arbitrary locally compact set

Let T be a fixed locally compact Hausdorff space that contains at least n þ 1
points.

Definition 3.1. Suppose G is an n-dimensional subspace of C0ðTÞ: Then we say that
G has the Chebyshev property C-1 or C-2, respectively, provided that

(C-1) PGð f Þ is a singleton for every fAC0ðTÞ; or
(C-2) each nonzero gAG has at most n 	 1 distinct zeros in T :

A space G with property C-1 is usually referred to as a Chebyshev subspace. If G

has property C-2, it is usually referred to as a Haar subspace. Basic linear algebra
shows that the subspace G ¼ spanfg1; g2;y; gng of C0ðTÞ is a Haar subspace if and
only if

D
g1; g2; ?; gn

t1; t2; ?; tn

 !
a0

for each choice of n distinct points ft1; t2;y; tng in T ; where

D
g1; g2; ?; gn

t1; t2; ?; tn

 !
:¼

g1ðt1Þ g2ðt1Þ ? gnðt1Þ
g1ðt2Þ g2ðt2Þ ? gnðt2Þ
^ ^ ? ^

g1ðtnÞ g2ðtnÞ ? gnðtnÞ

���������

���������
ð3:1Þ

is the determinant of the n  n matrix whose ijth entry is gjðtiÞ: Equivalently, G is a

Haar subspace if and only if for any distinct t1; t2;y; tn and any real numbers
z1;y; zn; there exists a unique gAG such that

gðtiÞ ¼ zi; i ¼ 1;y; n:

Haar [4] showed that the Chebyshev and Haar properties are equivalent when T is
compact, see also [6]. The analogous result for locally compact T was established by
Phelps [8], see also [1] and [10, pp. 215–218]. Thus, we have

Fact 3.2. A finite-dimensional subspace of C0ðTÞ has property C-1 if and only if it has

property C-2:

We now recall two further properties of finite-dimensional subspaces of C0ðTÞ
that are related to the ability to interpolate given values at given points.

Definition 3.3 ([2]). An n-dimensional subspace G of C0ðTÞ is said to be weakly

interpolating (WI) provided that for each set of n distinct points tiAT and each set of
n signs siAf	1; 1g; there exist neighborhoods Ui of ti and a nontrivial gAG such that

sigðtÞX0 for all tAUi and i ¼ 1; 2;y; n: ð3:2Þ
G is said to be interpolating (I) if strict inequality holds in (3.2).
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So far we have discussed only properties of a subspace G which can be defined
wholly in terms of elements of the subspace G without any reference to any elements
outside of G: We call such properties intrinsic properties. We now introduce several
nonintrinsic properties. Recall that a point tAT is called a peak point for fAC0ðTÞ if
j f ðtÞj ¼ jj f jj: The following three peak point properties were introduced and studied
in [2].

Definition 3.4. The n-dimensional subspace G is said to have the peak point

properties P-1, P-2, or P-3 provided that

(P-1) for each fAC0ðTÞ that has a unique best approximation g0AG; f 	 g0 has at
least n þ 1 peak points;

(P-2) for each fAC0ðTÞ; there exists g0APGð f Þ such that f 	 g0 has at least n þ 1
peak points;

(P-3) for each fAC0ðTÞ and each g0APGð f Þ; f 	 g0 has at least n þ 1 peak points.

Theorem 3.5. Let T be an arbitrary locally compact set. Then the various properties

introduced in this section are related as shown in Fig. 1. Moreover, with the possible

exception of implication WI ) P-1; none of the one-sided implications is reversible.

Proof. Proofs of all of the direct implications in Fig. 1 can be found in [2,3]. It is not
known whether P-1 ) WI; but all of the other one-sided implications are known to
be nonreversible, see [2,3]. &

Concerning the question of whether P1 ) WI; it is known (see [2, Theorems 3.10–
3.11]) that under certain additional restrictions on G; the answer is affirmative.

To conclude this section, we note the (perhaps surprising) fact that for certain sets
T ; there are no finite-dimensional Chebyshev subspaces in C0ðTÞ (see Example 8.3
below).

4. T a locally compact subset of R

Throughout this section we assume that T is a locally compact subset of the set of

real numbers R (with its usual topology). Equivalently (see, e.g., [3]), we assume %T\T

is closed. We now introduce several other types of Chebyshev and weak Chebyshev
properties, and discuss the relationships that hold between them.
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Definition 4.1. An n-dimensional subspace G of C0ðTÞ is said to have the Chebyshev

property C-3 provided that for any basis fg1; g2;y; gng of G and every collection of
points t1ot2o?otn and s1os2o?osn in T ;

D
g1; g2; ?; gn

t1; t2; ?; tn

 !
� D

g1; g2; ?; gn

s1; s2; ?; sn

 !
40: ð4:1Þ

It is not hard to show that an n-dimensional subspace G has property C-3 if and
only if (4.1) holds for some basis of G; see [9, Theorem 2.26, p. 32]. The following
result explores the connection between properties C-1, C-2, and C-3. Recall that an
interval in R is any set of the form ½a; b�; ½a; bÞ; ða; b�; or ða; bÞ; where apb; and
a ¼ 	N or b ¼ N is allowed on the open ends. Note that every interval is locally
compact.

Theorem 4.2. Let G be an n-dimensional subspace of C0ðTÞ:

(1) If G has property C-3; then G has property C-1: The converse does not hold in

general.
(2) If T is an interval, then G has any one of the properties C-1; C-2; or C-3 if and only

if it has all of them.

Proof. Fact 3.2 asserts that C-1 and C-2 are equivalent. To prove (1), suppose G has
property C-3. Then it is clear from (4.1) that G has property C-2, and hence also C-1.
To see that the converse fails, see either Example 8.4 or Example 8.5 below.

To prove (2), suppose T is an interval and that G ¼ spanfg1; g2;y; gng is an
n-dimensional subspace having property C-2 but not property C-3. In this case there
must exist points t1o?otn and s1o?osn in T such that

D
g1; ?; gn

t1; ?; tn

 !
o0oD

g1; ?; gn

s1; ?; sn

 !
:

For each lA½0; 1�; let riðlÞ ¼ lti þ ð1 	 lÞsi for i ¼ 1; 2;y; n: Then each riðlÞAT

since T is an interval, rið0Þ ¼ si; rið1Þ ¼ ti; and r1ðlÞo?ornðlÞ so that
r1ðlÞ;y; rnðlÞ form a distinct set of points for each l: Now riðlÞ is a continuous

function of l implies that D
g1; ?; gn

r1ðlÞ; ?; rnðlÞ

� �
is also a continuous function of l:

By the mean value theorem, it follows that there is some lAð0; 1Þ such that

D
g1; ?; gn

r1ðlÞ; ?; rnðlÞ

� �
¼ 0; which contradicts our assumption that G has property

C-2. &

The following types of ‘‘weak Chebyshev’’ properties were introduced in [3]. They
are all intrinsic.
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Definition 4.3. An n-dimensional subspace G ¼ spanfg1; g2;y; gng of C0ðTÞ is said
to have the Weak-Chebyshev property W-1, W-10; W-2, W-20; W-3, or W-4 provided
that:

(W-10) for every 	N ¼ t0ot1o?otn	1otn ¼ N with t1;y; tn	1AT ; there exists
a nontrivial gAG such that

ð	1Þi
gðtÞX0 for all tA½ti; tiþ1Þ-T ; for i ¼ 0;y; n 	 1;

(W-1) for every 1pmpn and 	N ¼ t0ot1o?otm	1otm ¼ N with
t1;y; tm	1AT ; there exists a nontrivial gAG such that

ð	1Þi
gðtÞX0 for all tA½ti; tiþ1Þ-T ; for i ¼ 0;y;m 	 1;

(W-20) for every 	N ¼ t0ot1o?otn	1otn ¼ N with t1;y; tn	1AT ; there exists
a nontrivial gAG such that

ð	1Þi
gðtÞX0 for all tA½ti; tiþ1�-T ; for i ¼ 0;y; n 	 1;

(W-2) for every 1pmpn and 	N ¼ t0ot1o?otm	1otm ¼ N with
t1;y; tm	1AT ; there exists a nontrivial gAG such that

ð	1Þi
gðtÞX0 for all tA½ti; tiþ1�-T ; for i ¼ 0;y;m 	 1;

(W-3) for each choice of points t1ot2o?otn and s1os2o?sn in T ;

D
g1; ?; gn

t1; ?; tn

 !
� D

g1; ?; gn

s1; ?; sn

 !
X0;

(W-4) each gAG has at most n 	 1 sign changes, i.e., there do not exist n þ 1
points t1o?otnþ1 in T such that gðtiÞgðtiþ1Þo0 for i ¼ 1;y; n:

Despite the terminology, it turns out that a Chebyshev subspace is not always a
Weak Chebyshev subspace (see Example 8.4 below). Recall that a set of points
t1ot2o?otk in T are called alternating peak points for the function fAC0ðTÞ if

there exists s ¼ 71 such that f ðtiÞ ¼ sð	1Þijj f jj for i ¼ 1;y; k:

Definition 4.4. An n-dimensional subspace G of C0ðTÞ is said to have the alternation

property A-1, A-2, or A-3 provided

(A-1) for every fAC0ðTÞ that has a unique best approximation g0AG; f 	 g0 has at
least n þ 1 alternating peak points;
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(A-2) for every fAC0ðTÞ; there exists g0APGð f Þ such that f 	 g0 has at least n þ 1
alternating peak points;

(A-3) for every fAC0ðTÞ and every g0APGð f Þ; f 	 g0 has at least n þ 1 alternating
peak points.

Theorem 4.5. Let T be a locally compact subset of R: Then the various properties

introduced above are related as shown in Fig. 2. It is an open question whether P-1 )
WI; but none of the other one-sided implications can be reversed.

Proof. The direct implications are established in [2,3]. These papers also establish the
nonreversibility of all one-sided implications, except for the following two cases:

(1) A-1RA-2: If this implication were true, then it would follow from Fig. 2 that
property W-1 implies property W-20; which is known not to be the case.

(2) A-2RA-3: If this implication were true, then it would follow from Fig. 2 that
property W-2 implies property C-2, which is known not to be the case. &

5. T an interval

Theorem 5.1. Let T be an interval. Then the various properties introduced above are

related as shown in Fig. 3. Moreover, with the possible exception of implication WI )
P-1; none of the one-sided implications can be reversed.

Proof. Except for A-33P-3; all of the implications indicated by the arrows in Fig. 3
are explicitly stated in [2,3]. Implication A-3 ) P-3 is trivial. Now suppose G has
property P-3. Then G has property C-1 by Deutsch et al. [3, Theorem 7.1], and
by Deutsch et al. [3, Corollary 3.2(4)(c)] also property W-2. Thus, G has both of
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the properties C-1 and W-2, and hence must also have property A-3 by Deutsch et al.
[3, Theorem 5.1].

The nonreversibility of the one-sided implications was established in [2,3] except
for the cases listed in the proof of Theorem 4.5. But the discussion of these cases
given there also applies here. &

6. Properties of limit spaces

In this section we answer Question 1.2 concerning what properties a space G must
have if it is the limit of a sequence of spaces Gk with some specified property. Our
results are summarized in Tables 1–3, which correspond to the cases where

(1) T is an interval,
(2) T is a locally compact subset of R;
(3) T is an arbitrary locally compact set.

In each of the tables, the properties of G are listed in the first column, and the
properties of the Gk are listed across the top. An entry Y (yes) in the ði; jÞth position
in the table means that if a sequence of subspaces Gk has the property in the jth
column, then the limit space G has the property in the ith row. An entry N (no)
means that the limit space does not necessarily have that property.

To simplify the tables, we have combined groups of equivalent properties. Thus, in
Table 1, C stands for C-1 � C-2 � C-3: Similarly, W stands for any of the equivalent
properties W-1, W-10; W-2, W-20; W-3, or W-4. In Table 2, C-2 � C-1: Note that we
have ordered the properties so that in general (but not always) the properties
become weaker as we move down or to the right. The process of justifying the entries
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in the tables can be greatly simplified by taking account of the following
observations:

* An N in a table implies an N in the same position in subsequent tables (since T is
increasingly more general).

* A Y in a table implies a Y in the same position in previous tables.
* An N in the ði; jÞth position of a table implies an N in row i and all columns

corresponding to properties that are weaker than the property in column j: It also
implies an N in column j and all rows corresponding to properties that are
stronger than the property in row i:

* A Y in the ði; jÞth position of a table implies a Y in row i and all columns
corresponding to properties that are stronger than the property in column j: It
also implies a Y in column j and all rows corresponding to properties that are
weaker than the property in row i:

* If a subspace G has property P but not property Q, then the constant
sequence Gk ¼ G will have the property P, but the limit will not have the
property Q.

We now give explicit justifications for the key entries in each of the tables. All
other entries can be deduced using the above principles. We identify each entry by
the pair ði; jÞ describing its position in the table.

Table 1:

(1,1): Example 8.1 shows that this entry is N. This gives N in all other columns of
row 1.

(2,2): Theorem 9.1 shows that this entry is Y. This implies a Y in the ði; 1Þ and ði; 2Þ
positions for all iX2:

ði,4): and ði; 5Þ for 1pip5: To see that these entries are N, we can take Gk ¼ G to
be as in Example 8.2.

Table 2:

(3,3), (4,4): Theorem 9.1 shows that these entries are Y. This implies that the entries
in ði; 3Þ with iX3 are also Y. Since C-3 implies W, we know that the entry in
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Table 1

Limit relations for T an interval

C W P-2 WI P-1

C N N N N N

W Y Y N N N

P-2 Y Y N N

WI Y Y N N

P-1 Y Y N N
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(3,1) is also Y. This implies that the entries in ði; 1Þ with iX3 are also Y. The Y
in (4,4) implies a Y in (7,4).

(3,4): To see that this entry is N, we can take Gk ¼ G to be a space that does not
have property W, but which does have property W-1.

(4,2): We can take Gk ¼ G to be the space in Example 8.5.
(4,5): To see that this entry is N, we can take Gk ¼ G to be the space in

Example 8.5.

7. Approximability of spaces

In this section we answer Question 1.3 concerning whether a space G with a given
property can be approximated by a sequence of a spaces Gk with some other
property. Our results are summarized in Tables 4–6. In each of the tables the
properties of G are listed in the first column, and the properties of the Gk are listed in
the first row. An entry Y (yes) in the ði; jÞth position in the table means that a space G

with the property in the ith row can be approximated by spaces Gk with the property
in the jth column. An entry N (no) means that G cannot be approximated by such a
sequence.

As in Section 6, to simplify the tables we have combined groups of equivalent
properties. Thus, in Table 4, C stands for C-1 � C-2 � C-3: Similarly, W stands for
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Table 2

Limit relations for T an arbitrary locally compact subset of R

C-3 C-2 W W-1 P-2 WI P-1

C-3 N N N N N N N

C-2 N N N N N N N

W Y N Y N N N N

W-1 Y N Y Y N N N

P-2 Y Y N N N

WI Y Y N N N

P-1 Y Y Y N N

Table 3

Limit relations for an arbitrary locally compact T

C-2 WI P-3 P-2 P-1

C-2 N N N N N

P-3 N N N

WI N N

P-2 N N

P-1 N N
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any of the equivalent properties W-1, W-10; W-2, W-20; W-3, or W-4. In Table 5,
C-2 � C-1:

The process of justifying the entries in the tables can be greatly simplified by
taking account of the following observations:

* All three tables contain Y’s on the diagonals since a space can always be
approximated by itself.

* An N in a table implies an N in the same position in subsequent tables (since the
tables deal with increasingly more general sets T).

* A Y in a table implies a Y in the same position in previous tables.
* An N in the ði; jÞth position of a table implies an N in column j and all other rows

corresponding to properties that are weaker than the property in row i: It also
implies an N in row i and all other columns corresponding to properties that are
stronger than the property in column j:

* A Y in the ði; jÞth position of a table implies a Y in row i for all other columns
corresponding to properties that are weaker than the property in column j: It also
implies a Y in column j and all other rows corresponding to properties that are
weaker than the property in row i:

* Many entries of N can be deduced from the limit properties of Tables 1–3,
since if a subspace G has property P but not property Q, and if the
sequence Gk has property Q in the limit, then we cannot approximate G by
such Gk:

We now give explicit justifications for the key entries in Tables 4–6. All other
entries can be deduced by using the above principles. We identify each entry by the
pair ði; jÞ describing its position in the table. As observed above, we clearly have Y on
the diagonals of all three tables. The many Y’s in the upper triangular parts of the
table follow from the fifth observation in the above list.

Table 4:

(2,1): Theorem 1.4 implies that this entry is Y.
(3,2): Taking G to be a space which has property P2 but not property W, we

conclude that this entry must be N, since by Table 1 the limit of spaces with
property W must have property W.

(4,2): We take G to be a space with property WI but not property W.
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Table 4

Approximability for T an interval

C W P-2 WI P-1

C Y Y Y Y Y

W Y Y Y Y Y

P-2 N N Y Y

WI N N Y Y

P-1 N N Y
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Table 5:

(3,1): This entry remains open, but Theorem 11.1 implies that it would be Y if we
allow approximation by functions which are just continuous and bounded
(rather than in C0ðTÞÞ:

(4,3): Taking G to be a space which has property W-1 but not property W, we
conclude that the entry must be N, since by Table 1 the limit of spaces with
property W must have property W.

Table 6:

(3,1), (4,1), (5,1): To see that these entries are N, we can take any space G with the
desired property defined on a uncountable set with the discrete topology, since
then (cf. Example 8.3) there are no Chebyshev subspaces.

8. Examples

In this section we collect several examples that are used throughout the paper.
Recall that the characteristic function of a subset SCT is the function wS : T-R

whose value is 1 if tAS and is 0, otherwise. A delta function at the point t0AT ;
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Table 5

Approximability for T a locally compact subset of R

C-3 C-2 W W-1 P-2 WI P-1

C-3 Y Y Y Y Y Y Y

C-2 N Y N N Y Y Y

W Y Y Y Y Y

W-1 N N Y Y

P-2 N N N Y Y

WI N N N Y Y

P-1 N N Y

Table 6

Approximability for arbitrary locally compact T

C-2 P-3 WI P-2 P-1

C-2 Y Y Y Y Y

P-3 Y Y Y

WI N Y Y

P-2 N Y Y

P-1 N Y

F. Deutsch et al. / Journal of Approximation Theory 123 (2003) 188–213 201



denoted dt0 ; is the characteristic function of the singleton ft0g; i.e., dt0 ¼ wft0g:

Clearly, dt0 is in C0ðTÞ if and only if t0 is an isolated point of T :

Example 8.1. Let T :¼ ½0; 1� and let G be the one-dimensional space spanned by
gðtÞ ¼ t: For each kX1; let Gk be the one-dimensional space spanned by gkðtÞ ¼
1=k þ tðk 	 1Þ=k: Then gk-g; and although each of the subspaces Gk has property
C-3, the limit space G does not have any of the equivalent properties C-1, C-2,
or C-3.

Proof. For each kX1; it is easy to check from the definition that Gk has property C-3
since gk is positive on ½0; 1�: Since g has a zero at 0, the subspace G does not have
property C-2. By Theorem 4.2, all the C-i properties are equivalent. &

Example 8.2. Let T :¼ ½	1; 1� and let G be the one-dimensional space spanned by
gðtÞ ¼ t: Then G has none of the properties in Fig. 3. However, G is approximable by
the sequence of one-dimensional spaces Gk spanned by

gkðtÞ ¼
t þ 1=k; 	1ptp	 1=k;

0; 	1=kptp1=k;

t 	 1=k; 1=kptp1;

8><
>:

and the Gk have property WI for all kX1:

Proof. For the first assertion, it suffices to show that G does not have property P-1.

To see this, we observe that the function f ðtÞ :¼ 1 	 t2 has a unique best
approximation in G; namely g � 0; and the difference f 	 g has just one peak
point. It is clear that the Gk approximate G; and it is easy to check from the
definition that each Gk has property WI. &

Example 8.3. Let T be an uncountable set with the discrete topology (i.e., all sets are
open). Then there are no finite-dimensional Chebyshev subspaces in C0ðTÞ:

Proof. Clearly, the only compact sets in T are the finite sets. Thus, given a function
f : T-R; we see that fAC0ðTÞ if and only if for each e40; the set ftAT : j f ðtÞjXeg
is finite. Thus,

supp f :¼ ftAT : f ðtÞa0g ¼
[N
k¼1

ftAT : j f ðtÞjX1=kg

is countable. Now let G ¼ spanfg1; g2;y; gng be any n-dimensional subspace of

C0ðTÞ; and let S ¼
Sn

1 supp gi: Then S is countable, and gðtÞ ¼ 0 for all tAT\S and

each gAG: Since S is countable, there exists a point t0AT\S; and we define f on T by
f ðt0Þ ¼ 1 and f ðtÞ ¼ 0 for all tAT\ft0g: Then fAC0ðTÞ; and for each gAG; j f ðt0Þ 	
gðt0Þj ¼ j f ðt0Þj ¼ 1 ¼ jj f jj; and so jj f 	 gjjX1 ¼ jj f jj for each gAG: This proves
that 0APGð f Þ: But for any gAG with jjgjj ¼ 1; we see that jj f 	 gjj ¼ 1 and hence
gAPGð f Þ: This proves that both 0 and g are best approximations to f from G: Thus
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G is not Chebyshev. (This result can also be proved by using Fact 3.2 and the
observation that for this class of T ; every function in C0ðTÞ has infinitely many
zeros.) &

Example 8.4. Let T ¼ f1; 2g; and let G be the one-dimensional subspace spanned by

the function gðtÞ ¼ ð	1Þt: Then G has property C-2, but does not have property C-3
or any of the weak Chebyshev properties. In fact, G is not even approximable by
spaces having property C-3 or any of the weak Chebyshev properties.

Proof. Clearly, G has property C-2 since any nontrivial gAG cannot vanish.
On the other hand, since g is not of one sign on T ; if gk is any sufficiently close
function, it must also have more than one sign. We conclude that G cannot be
approximated by spaces Gk with property W-10 or any of the other Weak-Chebyshev
properties. &

As shown in Fig. 1, a Chebyshev subspace must have properties I, WI, P-1, P-2,
and P-3. We now describe a Chebyshev subspace that, aside from these properties
that all Chebyshev subspaces must have, fails to have any of the other properties that
are studied in this paper.

Example 8.5. Let T ¼ ½0; 1�,f2g; g1 ¼ w½0;1� 	 d2; and G ¼ spanfg1g: Then

(1) G has properties C-1 and C-2, but not property C-3.
(2) G has the properties I, WI, P-1, P-2, and P-3.
(3) G fails to have any of the properties W-1, W-10; W-2, W-20; W-3, or W-4.
(4) G fails to have any of the properties A-1, A-2, or A-3.

Proof. Clearly, nontrivial functions in G cannot have any zeros, so G has the Haar
property and is thus Chebyshev. On the other hand,

D
g1

1

 !
� D

g1

2

 !
¼ 1ð	1Þ ¼ 	1o0;

so G does not have property C-3. This proves (1). The properties listed in (2) follow
from Fig. 1. To prove (3), note that for one-dimensional subspaces, all of the weak
Chebyshev properties are obviously equivalent to the condition that the basis
element g1 have one sign on T : But g1ð1Þg1ð2Þo0 shows that this fails. Finally, to

prove (4), note that the best approximation in G of the function f ¼ d2 is g0 :¼ 	1
2

g1;

and f 	 g0X0: Thus G fails to have property A-1. &

Example 8.6. Let T ¼ f1; 2; 3; 4g; g1 ¼ d1; g2 ¼ d2 	 d3; and G ¼ spanfg1; g2g: Then
G has properties W-1 and W-10; but not any of the equivalent properties W-2, W-20;
W-3, or W-4. Moreover, G cannot be approximated by either C-3 or W-2 subspaces.
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Proof. To see that G has property W-1, we note that for any t1AT ; the function g1

itself has the required signs on ½1; t1Þ and on ½t1; 4�: Clearly, G does not have property
W-4 since g :¼ g1 	 g2 has 2 sign changes. This implies G does not have the equivalent
properties W-2, W-20; W-3, and W-4. Now suppose G were approximatable by
subspaces having property C-3. Then by the first part of Theorem 11.1 it would have
property W-4, which we have just shown is not the case. Finally, G is not approximable
by subspaces having property W-2, since as noted in Table 2 the limit of a sequence of
spaces with property W-2 must also have property W-2 (and G does not). &

9. Limits of sequences of weak Chebyshev subspaces

Throughout this section we suppose that T is a locally compact subset of R:

Theorem 9.1. Suppose that G is approximable by a sequence of subspaces Gk; all

having property W; where W is one of the properties W-1; W-10; W-2; W-20; W-3; or

W-4: Then G also has property W:

Proof. Suppose G ¼ spanfg1;y; gng and Gk ¼ spanfgk;1;y; gk;ng: We first con-

sider the case where the Gk all have property W-3. Then

D
g1; ?; gn

t1; ?; tn

 !
D

g1; ?; gn

s1; ?; sn

 !

¼ lim
k-N

D
gk;1; ?; gk;n

t1; ?; tn

 !
� D

gk;1; ?; gk;n

s1; ?; sn

 !
X0;

for all t1ot2o?otn and s1os2o?sn in T ; and thus G also has property W-3. This
proves the theorem for W-3.

Now suppose that the Gk have property W-4, but that G does not. Then there exist
n þ 1 points t1o?otnþ1 in T and nontrivial gAG such that

gðtiÞgðtiþ1Þo0; i ¼ 1;y; n:

Without loss of generality we may assume that jjgjj ¼ 1: Let

e :¼ min
1pipnþ1

jgðtiÞj:

Then e40; and there exists a subspace Ge with property W-4 such that

sup
gABðGÞ

dðg;BðGeÞÞoe:

Hence, there exists geABðGeÞ with jjg 	 gejjoe and, in particular,

jgðtiÞ 	 geðtiÞjoe; i ¼ 1;y; n þ 1:

This implies that geðtiÞgðtiÞ40; and it follows that

geðtiÞgeðtiþ1Þo0; i ¼ 1;y; n;
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which implies that Ge could not have property W-4, a contradiction. This proves the
theorem for W-4.

We now prove the theorem when W denotes one of properties W-10; W-1, W-20; or
W-2. Such a property can always be expressed in the following form: G has property
W iff for each set of points 	N ¼ t0ot1o?otm	1otm ¼ N; there exists a
nontrivial gAG with

ð	1Þi
gðtÞX0 for all tASi; i ¼ 0;y;m 	 1;

where Si ¼ ½ti; tiþ1Þ-T or Si ¼ ½ti; tiþ1�-T and 1pmpn or m ¼ n:
Now suppose each Gk has property W. Then there exist nontrivial hkAGk such

that

ð	1Þi
hkðtÞX0 for all tASi; i ¼ 0;y;m 	 1: ð9:1Þ

Without loss of generality, we may assume jjhkjj ¼ 1 for all k: Since all norms are
equivalent on a finite-dimensional space, there exist constants ck40 and c40 such
that for all aARn and all k;

Xn

i¼1

aigk;i

�����
�����

�����
�����Xck

Xn

i¼1

jaij;

Xn

i¼1

aigi

�����
�����

�����
�����Xc

Xn

i¼1

jaij:

In fact (see Taylor [11, proof of Theorem 3.12A, p. 95]),

ck ¼ inf
Xn

i¼1

aigk;i

�����
�����

�����
�����:
Xn

i¼1

jaij ¼ 1

( )
;

c ¼ inf
Xn

i¼1

aigi

�����
�����

�����
�����:
Xn

i¼1

jaij ¼ 1

( )
:

We now show that ck-c as k-N: Suppose e40; and choose k sufficiently large
so that

jjgk;i 	 gijjoe; i ¼ 1;y; n:

This implies that for every aARn with
Pn

i¼1 jaij ¼ 1;

Xn

i¼1

aigi

�����
�����

�����
�����	

Xn

i¼1

aigk;i

�����
�����

�����
�����

�����
�����p

Xn

i¼1

aigi 	
Xn

i¼1

aigk;i

�����
�����

�����
�����

p
Xn

i¼1

jaijjjgi 	 gk;ijjo
Xn

i¼1

jaije ¼ e:

Thus,

Xn

i¼1

aigi

�����
�����

�����
�����	 eo

Xn

i¼1

aigk;i

�����
�����

�����
�����o

Xn

i¼1

aigi

�����
�����

�����
�����þ e
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for every aARn with
Pn

i¼1 jaij ¼ 1: It follows that c 	 epckpc þ e; and so ck-c as

asserted.
For the remainder of the proof we assume that k is sufficiently large so that

ck4c=2: We now show that the sequences ðak;iÞNk¼1 are uniformly bounded for all

i ¼ 1;y; n: We have

1 ¼ jjhkjj ¼
Xn

i¼1

ak;igk;i

�����
�����

�����
�����Xck

Xn

i¼1

jak;ijX
c

2

Xn

i¼1

jak;ij:

Hence,Xn

i¼1

jak;ijp
2

c
for all k;

and in particular jak;ijp2=c for all k and i:
To complete the proof, we now assume (by passing to a subsequence if necessary)

that

ak;i-aiAR; i ¼ 1;y; n:

Since gk;i converges uniformly to gi for i ¼ 1;y; n; it follows that

hk ¼
Xn

i¼1

ak;igk;i-
Xn

i¼1

aigi ¼: g:

Clearly, gAG; jjgjj ¼ 1 (since jjhkjj ¼ 1 for all k), and by (9.1),

ð	1Þi
gðtÞX0 for all tASi; i ¼ 0;y;m 	 1:

Thus, G also has property W as asserted. &

10. Properties of extended functions

A key tool for our study of the approximability of weak Chebyshev spaces by
Chebyshev spaces is the idea of extending a function defined on T to an interval, see

[2]. Given T ; let T̃ be the smallest closed interval containing T ; i.e., T̃ is the
intersection of all closed intervals containing T : Given a function fAC0ðTÞ; we

define its extension f̃ on T̃ as follows:

f̃ðtÞ ¼
f ðtÞ if tAT ;

0 if tA %T\T ;

linear in each open subinterval of T̃\ %T:

8><
>:

It is shown in [2] that for every function fAC0ðTÞ; the extension f̃ belongs to C0ðT̃Þ:
Given an n-dimensional space G ¼ spanfg1;y; gng; we write G̃ for the subspace

of all extensions of elements in G: Then it is easy to see that G̃ :¼ spanfg̃1; g̃2;y; g̃ng:
The following lemma was established in [2].
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Lemma 10.1. A finite-dimensional subspace G of C0ðTÞ has all of the equivalent

properties W-2; W-20; W-3; and W-4 if and only G̃ has the same properties in C0ðT̃Þ:

We now show that the analog of this lemma fails for the properties W-1 or W-10:

Proposition 10.2. Let T ¼ f1; 2; 3; 4g; g1 ¼ d1; g2 ¼ d2 	 d3; and suppose G ¼
spanfg1; g2g: Then G is a two-dimensional subspace of C0ðTÞ that has properties

W-1 and W-10; but G̃ fails to have either property in C0ðT̃Þ:

Proof. The fact that G has properties W-1 and W-10 was shown in Example 8.6. We

now show that the extension G̃ does not have property W-10: Here T̃ ¼ ½1; 4�; and g̃1

and g̃2 are piecewise linear functions on T̃ with knots at the integers f2; 3g: For any

given 1ot1o2; it is impossible to find a g̃AG̃ that is nonnegative on ½1; t1� and

nonpositive on ½t1; 4�; and so G̃ does not have either property W-1 or W-10: &

11. A generalization of the Jones–Karlovitz theorem

Throughout this section we suppose that T is a locally compact subset of R and
that CbðTÞ is the Banach space of all real-valued continuous bounded functions f on
T equipped with the supremum norm jj f jj :¼ suptAT j f ðtÞj: Note that
C0ðTÞCCbðTÞ; but the spaces are not the same in general. For example, consider
T :¼ ð0; 1�: Then the nontrivial constant functions are in CbðTÞ but not in C0ðTÞ;
since fAC0ðTÞ implies that limt-0þ f ðtÞ ¼ 0: However, when T is compact, C0ðTÞ ¼
CbðTÞ ¼ CðTÞ:

Suppose G is a subspace of CbðTÞ that has one of properties W-2, W-20; W-3, or
W-4. Since these properties are equivalent in this setting (cf. Fig. 2), we follow the
convention used in Tables 2 and 5, and simply write W for this property. We call
such a subspace a weak Chebyshev subspace.

Theorem 11.1. Let G :¼ spanfg1;y; gng be an n-dimensional weak Chebyshev

subspace of C0ðTÞ: Then there exists a sequence of subspaces Hk :¼
spanfhk;1;y; hk;ng in CbðTÞ such that

(1) each Hk has property C-3;
(2) limk-N jjhk;i 	 gijj ¼ 0 for i ¼ 1;y; n:

In other words, every weak Chebyshev subspace in C0ðTÞ is approximable by C-3
subspaces in CbðTÞ:

Proof. Since T̃ is the smallest closed interval containing T ; it must have one of the

following forms: ð	N;NÞ; ð	N; b�; ½a;NÞ; or ½a; b�; where aob: Now let G̃ :¼
spanfg̃1;y; g̃ng be the space obtained from G by extension as described in Section

10. Since G has property W-3 in C0ðTÞ; it follows that G̃ has property W-3 in C0ðT̃Þ:
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We now further extend each g̃i to all of R by setting g̃iðtÞ ¼ g̃iðaÞ for all toa and

g̃iðtÞ ¼ g̃iðbÞ for all t4b: Note that the (extended) space G̃ has property W-3 in
CbðRÞ:

For each i ¼ 1;y; n and each kAN; let hk;i be the function mapping T to R

defined by

hk;iðtÞ :¼
Z

N

	N

Kkðt 	 sÞg̃iðsÞ ds; tAT ; ð11:1Þ

where

KkðuÞ :¼
kffiffiffi
p

p e	k2u2

; uAR ð11:2Þ

is the standard Gauss (or Weierstrass) kernel. We recall the following well-known
properties:

KkAC0ðRÞ and KkðuÞX0 for all uAR; ð11:3Þ
Z

N

	N

KkðuÞ du ¼ 1; k ¼ 1; 2;y; ð11:4Þ

Z
N

	N

u2KkðuÞ du ¼ 1

k2
; k ¼ 1; 2;y : ð11:5Þ

Clearly, for every tAT ; (11.4) implies that

jhk;iðtÞjp
Z

N

	N

Kkðt 	 sÞjjg̃ijj ds ¼ jjg̃ijj; ð11:6Þ

and so hk;i is a well-defined bounded function on T : We now show that it is

continuous. Fix any t0AT ; and let e40: By (11.4), there exists M40 such thatZ
R\½	M;M�

KkðsÞ dso
e

4jjg̃ijj
: ð11:7Þ

By (11.3), Kk is uniformly continuous on R; and thus there exits a dAð0; 1Þ such that

jKkðuÞ 	 KkðvÞjo
e

4ðM þ jt0j þ 1Þjjg̃ijj
; ð11:8Þ

whenever ju 	 vjod: It follows that for each tAT with jt 	 t0jod; we have

jhk;iðtÞ 	 hk;iðt0Þj ¼
Z
R

½Kkðt 	 sÞ 	 Kkðt0 	 sÞ�g̃iðsÞ ds

����
����

p
Z
R

jKkðt 	 sÞ 	 Kkðt0 	 sÞjjg̃iðsÞj ds

¼ I1 þ I2; ð11:9Þ

where

I1 :¼
Z
½	ðMþjt0jþ1Þ;Mþjt0jþ1�

jKkðt 	 sÞ 	 Kkðt0 	 sÞjjg̃iðsÞj ds
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and

I2 :¼
Z
R\½	ðMþjt0jþ1Þ;Mþjt0jþ1�

jKkðt 	 sÞ 	 Kkðt0 	 sÞjjg̃iðsÞj ds:

Using (11.8), we obtain

I1p
Z
½	ðMþjt0jþ1Þ;Mþjt0jþ1�

e
4ðM þ jt0j þ 1Þjjg̃ijj

jjg̃ijj ds ¼ e
2
:

Using (11.7), we obtain

I2p jjg̃ijj
Z
R\½	ðMþjt0jþ1Þ;Mþjt0jþ1�

½Kkðt 	 sÞ 	 Kkðt0 	 sÞ� ds

o jjg̃ijj
e

4jjg̃ijj
þ e

4jjg̃ijj

� �
¼ e

2
:

Substituting these two estimates into (11.9) gives

jhk;iðtÞ 	 hk;iðt0Þjoe;

whenever tAT and jt 	 t0jod: This shows that HkCCbðTÞ:
Since g̃iAC0ðT̃Þ; it follows that g̃i is uniformly continuous on T̃: By the way in

which g̃i was extended to R; it follows that g̃i is uniformly continuous on R: Thus,
given e40; there exists d ¼ dðeÞ40 such that for every s; tAR;

jg̃iðsÞ 	 g̃iðtÞjo
e
2
þ 2jjg̃ijj

d2
ðs 	 tÞ2:

Using this and Eqs. (11.4) and (11.5), we obtain

jhk;iðtÞ 	 g̃iðtÞj ¼
Z
R

Kkðt 	 sÞ½g̃iðsÞ 	 g̃iðtÞ� ds

����
����

p
Z
R

Kkðt 	 sÞjg̃iðsÞ 	 g̃iðtÞj ds

p
Z
R

Kkðt 	 sÞ e
2
þ 2jjg̃ijj

d2
ðs 	 tÞ2

� �
ds

¼ e
2
þ 2jjg̃ijj

d2

1

k2
:

Since the right-hand side is independent of t; this implies that

jjhk;i 	 g̃ijjp
e
2
þ 2jjg̃ijj

d2

1

k2
:

For k sufficiently large, it follows that jjhk;i 	 g̃ijjoe; which proves statement (2) of

the theorem.
It remains to verify statement (1) of the theorem. For each set of points t1o?otn

in T ; the space of exponentials spanned by fKkðt1 	 �Þ;y;Kkðtn 	 �Þg has property
C-3 in C0ðRÞ (see, e.g., [7, p. 11]). After interchanging two of these functions if
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necessary, we may assume that

D
Kkðt1 	 �Þ; ?; Kkðtn 	 �Þ

s1; ?; sn

 !
40 ð11:10Þ

for every choice of points s1o?osn in R: Similarly, since spanfg̃1;y; g̃ng has
property W-3 in CbðRÞ; we may assume that

D
g̃1; ?; g̃n

s1; ?; sn

 !
X0

for every s1o?osn in R: By the well-known composition formula for determinants
(see, e.g., [7, p. 81]),

A :¼
hk;1ðt1Þ hk;2ðt1Þ ? hk;nðt1Þ
? ?

hk;1ðtnÞ hk;2ðtnÞ ? hk;nðtnÞ

�������
�������

¼
Z
Wn

D
g̃1; ?; g̃n

s1; ?; sn

 !
D

Kkðt1 	 �Þ; ?; Kkðtn 	 �Þ
s1; ?; sn

 !
ds1ds2?dsn;

where

Wn :¼ fðs1;y; snÞARn: s1o?osng:

Now the first integrand cannot vanish for all ðs1;y; snÞAWn since g̃1;y; g̃n are
linearly independent. Thus,

D
g̃1; ?; g̃n

s1; ?; sn

 !
40

on some open subset of Wn: Combining this with (11.10), it follows that the
determinant A is positive, and we have shown that Hk has property C-3 in
CbðTÞ: &

Example 8.6 shows that the analog of Theorem 11.1 does not hold for properties
W-1 or W-10: The proof of Theorem 11.4 is modeled after the proof of the classical
Jones–Karlovitz Theorem 1.4 which deals with the interval ½a; b� (see, e.g., [7, p. 83]).
This result is of a slightly different nature than the others in this paper in the sense
that the approximating subspaces Hk here are not in C0ðTÞ; but instead lie in the
larger space CbðTÞ: It is natural to ask whether Hk can be constructed to lie in
C0ðTÞ: While this may be possible, it cannot be done using the method of
convolution with the Gauss kernel. Indeed, if we define hk;i by convolution with the

kernel Kk in (11.2), we get functions that lie in CbðTÞ but not in C0ðTÞ: To see this,
take for example T ¼ ð0; 1� and let g1ðtÞ ¼ t: Then G :¼ spanfg1g has property W-3

in C0ðTÞ: Now T̃ ¼ ½0; 1�; and (no matter how g̃1 is defined on R\T̃ as long as it
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remains bounded) the function

hk;1ðtÞ :¼
Z

N

	N

Kkðt 	 sÞg̃1ðsÞ ds; tAT ;

does not tend to 0 as t-0þ; which implies that hk;1eC0ðTÞ:
Using Theorem 11.1, it is easy to prove the following generalization of the Jones–

Karlovitz theorem.

Corollary 11.2. Suppose T is a compact subset of R and that G is a finite-dimensional

subspace of CðTÞ: Then G is weak Chebyshev if and only if G is approximable by

subspaces having property C-3:

Proof. If G is weak Chebyshev, then Theorem 11.1 implies that G is approximable
by C-3 subspaces in CbðTÞ ¼ CðTÞ: Conversely, if G is approximable by subspaces
having property C-3, then (see Fig. 2) G is approximable by subspaces having
property W-2. But limits of W-2 subspaces are also W-2 subspaces by Theorem 9.1.
Hence G has property W-2. &

Since a finite closed interval ½a; b� is compact, Corollary 11.2 implies the classical
Jones–Karlovitz Theorem 1.4. In [5], Jones and Karlovitz also showed that in C½a; b�;
properties W-20; W-3, W-4, and A-2 are all equivalent. In this connection we have
the following three results concerning the approximability of spaces having the
properties A-1, A-2, or A-3. Recall that in this section we are working under the
assumption that T is a locally compact subset of R:

Proposition 11.3. There exists a subspace G in C0ðTÞ having property A-1 that is not

approximable by C-3 subspaces.

Proof. This follows from Example 8.6, since A-1 and W-1 are equivalent from
Fig. 2. &

Theorem 11.4. Let G be a finite-dimensional subspace of C0ðTÞ:

(1) If G is approximable by C-3 subspaces, then G has property A-2:
(2) If T is compact, then G has property A-2 if and only if G is approximable by C-3

subspaces.

Proof. If G is approximable by C-3 subspaces, then, by Fig. 2, G is approximable by
W-2 subspaces. Since G is a limit of W-2 subspaces, G must also be a W-2 subspace
by Theorem 9.1. But W-2 is equivalent to A-2 by Fig. 2. Thus G must be an A-2
subspace. If T is compact, the result follows from Corollary 11.2. &
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Theorem 11.5. Let G be a finite-dimensional subspace of C0ðTÞ:

(1) If G has property C-1 and is approximable by C-3 subspaces, then G has property

A-3:
(2) If T is compact, then G has property A-3 if and only if G has property C-1 and is

approximable by C-3 subspaces.

Proof. If G is C-1 and is approximable by C-3 subspaces, then G is approximable by
W-2 subspaces by Fig. 2. By Theorem 9.1, G is W-2. By Fig. 2, G is A-3. If T is
compact and G is A-3, then by Fig. 2, G is C-1 and W-2. By Corollary 11.2, G is
approximable by C-3 subspaces. &

It would be interesting to know whether the ‘‘only if ’’ part of statement 2 in each
of the preceding two theorems is valid without the compactness of T :
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